Ap Biology Lab Manual Lab 11 Mitosis

Introduction: All new cells come from previously existing cells. New cells are formed by karyokinesis- the process in cell division which involves replication of the cell’s nucleus and cytokinesis-the process in cell division which involves division of the cytoplasm. Two types of nuclear division include mitosis and meiosis. Mitosis typically results in new somatic, or body, cells. Mitotic cell division is involved in the formation of an adult organism from a fertilized egg, asexual reproduction, regeneration, and maintenance or repair of body parts. Meiosis results in the formation of either gametes in animals or spores in plants.

Escience Lab 11 Mitosis

The cells formed have half the chromosome number of the parent cell. Mitosis is best observed in cells that are growing at a rapid pace, such as in the whitefish blastula or onion root cell tips. The root tips contain a special growth region called the apical meristem where the highest percentage of cells are undergoing mitosis. The whitefish blastula is formed immediately after the egg is fertilized, a period of rapid growth and numerous cell divisions where mitosis can be observed. There are several stages included in before, during, and following mitosis.

Interphase occurs right before a cell enters mitosis. During interphase, the cell will have a distinct nucleus with one or more nucleoli, which is filled with a fine network of threads of chromatin. During interphase, DNA replication occurs.

CeLL Division: Mitosis anD Meiosis. ALIGNMENT TO THE AP BIOLOGy CURRICULUM. • The outcomes for mitosis and meiosis In addition, this lab. Information on Mrs. Chou's Classes. AP Lab Investigation Manual - Student Version - Lab 3. AP Biology Lab 4.doc View Download.

After duplication the cell is ready to begin mitosis. Prophase is when the chromatin thickens until condensed into distinct chromosomes. The nuclear envelope dissolves and chromosomes are in the cytoplasm. The first signs of the microtubule-containing spindle also begin to appear. Next the cell begins metaphase. During this phase, the centromere of each chromosome attaches to the spindle and are moved to the center of the cell.

This level position is called the metaphase plate. The chromatids separate and pull to opposite poles during the start of anaphase. Once the two chromatids are separate, each is called a chromosome. The last stage of mitosis is telophase. At this time, a new nuclear envelope is formed and the chromosomes gradually uncoil, forming the fine chromatin network seen in interphase. Cytokinesis may occur forming a cleavage furrow that will form two daughter cells when separated.

Meiosis is more complex than mitotic stages and involves two nuclear divisions called Meiosis I and Meiosis II. They result in the production of four haploid gametes and allow genetic variation because of crossing over of genetic material.

Prior the process, interphase replicates the DNA. During prophase I, the first meiotic stage, homologous chromosomes move together to form a tetrad and synapsis also begins.

This is where crossing over occurs, resulting in the recombination of genes. In Metaphase I, the tetrads move to the metaphase plate in the middle of the cell as on mitotic metaphase. Anaphase I brings the tetrads back to their original two stranded form and moves them to opposite poles. During Telophase I, the centriole is finished and the cell prepares for a second division. In Meiosis II, in Prophase II, centrioles move to opposite ends of the chromosome group. In Metaphase II, the chromosomes are centered within the center of each daughter cell. Anaphase II involves the centromere of the chromatids separating.

Telophase II occurs when the divided chromosomes separate into different cells, known as haploid cells. Biology Of Plants Raven Pdf Rapidshare Premium. Sordaria fimicola, an ascomycete fungus, can be used to demonstrate the results of crossing over during meiosis. It spends most of its life haploid and only becomes diploid when the fusion of the mycelia of two different strains results in the fusion of two different types of haploid nuclei to form a diploid nucleus. Meiosis, followed by mitosis, in Sordaria results in the formation of eight haploid ascospores contained within a sac called an ascus.

They are contained in a perithecium, a fruiting body, until mature enough to be released. The arrangement of spores directly reflects whether or not crossing over occurred. If an ascus has four tan ascospores in a row and four black ascospores in a row -4:4 arrangement, then no crossing over has taken place.

If the asci has black and tan ascospores in sets of two -2:2:2:2 arrangement, or two pairs of black ascospores and four tan ascospores in the middle -2:4:2 arrangement, then crossing over has taken place. Hypothesis: The stages of mitosis can be examined in whitefish blastula and onion root cell tips by using a microscope. The process of crossing over and the stages of meiosis only occur during the creation of gametes and spores. Materials: Exercise 3A The materials necessary for this exercise are a light microscope, prepared slides of whitefish blastula, onion root cell tips, pencil, and paper. Exercise 3B For this portion of the lab, materials needed are a bag of color-coded connecting beads and magnetized 'centromeres,' several trays, and labels marked interphase, prophase, metaphase, anaphase, and telophase.